博客
关于我
【MXNet学习21】 4 MNIST手写数字体分类
阅读量:205 次
发布时间:2019-02-28

本文共 404 字,大约阅读时间需要 1 分钟。

MNIST手写数字体分类入门

MNIST数据集是机器学习领域的经典 datasets之一,主要用于手写数字分类任务。该数据集包含60000个训练样本和10000个测试样本,涵盖数字0-9十个类别。图4-1展示了数据集的典型图像样例。

对于计算机而言,图像数据并非我们直观的二维图像形式,而是一个三维矩阵。以MNIST数据集为例,单张手写数字的图像可表示为一个28x28x1的三维矩阵。其中,前两个维度对应图像的宽度和高度,第三个维度则表示图像的通道数。

在MNIST数据集中,所有图像均为灰度图像,因此通道数为1。如果处理的是彩色图像,则通道数会扩展至3,分别对应RGB三个颜色通道(红、绿、蓝)。因此,灰度图像可简化为二维矩阵形式,而彩色图像则扩展为三维矩阵。

这一三维矩阵结构是深度学习框架(如MXNet)处理图像数据的基础。通过对这些矩阵数据进行特征提取和分类模型训练,计算机能够学习区分不同手写数字。

转载地址:http://ncdi.baihongyu.com/

你可能感兴趣的文章
NullPointerException Cannot invoke setSkipOutputConversion(boolean) because functionToInvoke is null
查看>>
null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
查看>>
Numix Core 开源项目教程
查看>>
numpy
查看>>
NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
查看>>
numpy 或 scipy 有哪些可能的计算可以返回 NaN?
查看>>
numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
查看>>
numpy 数组与矩阵的乘法理解
查看>>
NumPy 数组拼接方法-ChatGPT4o作答
查看>>
numpy 用法
查看>>
Numpy 科学计算库详解
查看>>
Numpy.fft.fft和numpy.fft.fftfreq有什么不同
查看>>
Numpy.ndarray对象不可调用
查看>>
Numpy:按多个条件过滤行?
查看>>
Numpy:条件总和
查看>>
numpy、cv2等操作图片基本操作
查看>>
numpy判断对应位置是否相等,all、any的使用
查看>>
Numpy如何使用np.umprod重写range函数中i的python
查看>>
numpy数组替换其中的值(如1替换为255)
查看>>
numpy数组索引-ChatGPT4o作答
查看>>