博客
关于我
【MXNet学习21】 4 MNIST手写数字体分类
阅读量:205 次
发布时间:2019-02-28

本文共 404 字,大约阅读时间需要 1 分钟。

MNIST手写数字体分类入门

MNIST数据集是机器学习领域的经典 datasets之一,主要用于手写数字分类任务。该数据集包含60000个训练样本和10000个测试样本,涵盖数字0-9十个类别。图4-1展示了数据集的典型图像样例。

对于计算机而言,图像数据并非我们直观的二维图像形式,而是一个三维矩阵。以MNIST数据集为例,单张手写数字的图像可表示为一个28x28x1的三维矩阵。其中,前两个维度对应图像的宽度和高度,第三个维度则表示图像的通道数。

在MNIST数据集中,所有图像均为灰度图像,因此通道数为1。如果处理的是彩色图像,则通道数会扩展至3,分别对应RGB三个颜色通道(红、绿、蓝)。因此,灰度图像可简化为二维矩阵形式,而彩色图像则扩展为三维矩阵。

这一三维矩阵结构是深度学习框架(如MXNet)处理图像数据的基础。通过对这些矩阵数据进行特征提取和分类模型训练,计算机能够学习区分不同手写数字。

转载地址:http://ncdi.baihongyu.com/

你可能感兴趣的文章
node模块的本质
查看>>
node环境下使用import引入外部文件出错
查看>>
node环境:Error listen EADDRINUSE :::3000
查看>>
Node的Web应用框架Express的简介与搭建HelloWorld
查看>>
Node第一天
查看>>
node编译程序内存溢出
查看>>
Node读取并输出txt文件内容
查看>>
node防xss攻击插件
查看>>
noi 1996 登山
查看>>
noi 7827 质数的和与积
查看>>
NOI-1.3-11-计算浮点数相除的余数
查看>>
NOI2010 海拔(平面图最大流)
查看>>
NOIp2005 过河
查看>>
NOIP2011T1 数字反转
查看>>
NOIP2014 提高组 Day2——寻找道路
查看>>
noip借教室 题解
查看>>
NOIP模拟测试19
查看>>
NOIp模拟赛二十九
查看>>
Vue3+element plus+sortablejs实现table列表拖拽
查看>>
Nokia5233手机和我装的几个symbian V5手机软件
查看>>